$Limits$ at $\pm \infty$

A strategy that sometimes helps to evaluate limits as $x \longrightarrow \pm \infty$ is to factor the largest terms from the numerator and denominator

$$
\frac{Ex}{x} = Evaluate \lim_{x \to \infty} \frac{2x^3 + x}{7x^3 + 1} \longrightarrow " \frac{\infty}{\infty}"
$$

$$
\frac{Solution}{\int_{x\to\infty}^{x} \frac{2x^3 + x}{7x^3 + 1}} = \lim_{x\to\infty} \frac{x^2(2 + \frac{x}{x^3})}{x^3(7 + \frac{1}{x^3})}
$$

$$
= \lim_{x\to\infty} \frac{2 + \frac{1}{x^2} - 1}{x^3} = \frac{2 + 0}{7 + 0} = \frac{2}{7}
$$

$$
\underline{Ex}: \quad \underline{T}f \quad f(x) = \frac{e^{x}+1}{e^{ax}+1} \text{ , } \text{ find } \lim_{x \to \infty} f(x) \text{ and } \lim_{x \to -\infty} f(x)
$$

$$
\frac{\text{Solution: } \quad \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{e^{x} + 1}{e^{2x} + 1} \quad \text{and} \quad \lim_{x \to \infty} \frac{\infty}{\infty}
$$

$$
= \lim_{x \to \infty} \frac{e^{x} (1 + \frac{1}{e^{x}})}{e^{2x} (1 + \frac{1}{e^{2x}})} = e^{x - 2x} = e^{-x} = \frac{1}{e^{x}}
$$

$$
= \lim_{x \to \infty} \frac{1}{e^{x} (1 + \frac{1}{e^{2x}})} = e^{x - 2x} = e^{-x} = \frac{1}{e^{x}}
$$

$$
= \lim_{x \to \infty} \frac{1}{e^{x} (1 + \frac{1}{e^{2x}})} = 0 \cdot 1 = \boxed{1}
$$

Also $\lim_{x \to \infty} \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{e^{x} \cdot 1}{e^{x} \cdot 1} = \frac{0 + 1}{0 + 1} = \boxed{1}$

Note: If
$$
\lim_{x \to \infty} f(x) = L
$$
 or $\lim_{x \to -\infty} f(x) = L$ where L

\nis a (finite) real number, then f has a horizontal

\nasymptote (HA) at $y = L$.

Ex: Find all horizontal asymptotes of
$$
f(x) = \frac{\sqrt{x^2+1}}{x+3}
$$

Solution: Let's compute $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$!

$$
\lim_{x \to \infty} \frac{\sqrt{x^2 + 1}}{x + 3} = \lim_{x \to \infty} \frac{\sqrt{x^2 + 1} + \frac{1}{x^2}}{x + 1} = \lim_{x \to \infty} \frac{\sqrt{x} \sqrt{1 + \frac{3}{x^2}}}{x(1 + \frac{3}{x})} = \lim_{x \to \infty} \frac{\sqrt{x} \sqrt{1 + \frac{3}{x^2}}}{x(1 + \frac{3}{x})} = x
$$
\n
$$
= \lim_{x \to \infty} \frac{x \sqrt{1 + \frac{3}{x^2}}}{x(1 + \frac{3}{x})} = \frac{\sqrt{1 + 0}}{(1 + 0)} = 1
$$
\n
$$
\frac{\pi}{2} = \frac{\sqrt{1 + 0}}{1 + 0} = 1
$$
\n
$$
\frac{\pi}{2} = \frac{\pi}{2}
$$
\n
$$
\frac{\pi}{2
$$

$$
= \frac{-\sqrt{1+0}}{(1+0)} = -1
$$

Thus, there is a horizontal asymptote at $y = -1$.

Infinite Limits

Limits of the form
$$
\frac{d}{\cos t}
$$
 or $\frac{d}{\cos t}$ are not
\nindeterminate — they are $\pm \infty$ depending on signs.
\n
$$
\frac{Ex}{x^2} \lim_{x \to 3^+} \frac{(x-a)(x-5)}{(x-1)(x-3)} = -\infty
$$
 since the limit has the form
\n
$$
\frac{1 \cdot (-a)}{a \cdot 0^+}
$$
 where 0^+ denotes a positive quantity approaching 0.
\n
$$
\frac{\text{Note: If } a \text{ is a (finite) real number and } a}{x \to a^+}
$$
\n
$$
\lim_{x \to a^-} f(x) = \pm \infty
$$
 or $\lim_{x \to a^+} f(x) = \pm \infty$, then f has a
\na vertical asymptote (*VA*) at $x = a$.

Ex: Does
$$
f(x) = \frac{x-2}{x^3-2x^2}
$$
 have any vertical asymptotes?
\nSolution: Vertical asymptotes may occur when attempting
\nto divide by 0. Note that

$$
\chi^3 - 2\chi^2 = 0 \iff \chi^2(x-2) = 0 \iff x = 0 \text{ or } x = 2.
$$

Let's now check
$$
\lim_{x\to0} f(x)
$$
 and $\lim_{x\to2} f(x)$.
\n
$$
\lim_{x\to0} \frac{x-2}{x^3-2x^2} = \lim_{x\to0} \frac{x-2}{x^2(x-2)} = \lim_{x\to0} \frac{1}{x^2} = \infty
$$
\n
$$
\Rightarrow \boxed{\sqrt{4} \text{ at } x=0.}
$$
\n
$$
\lim_{x\to2} \frac{x-2}{x^3-2x^2} = \lim_{x\to2} \frac{x-2}{x^2(x-2)} = \lim_{x\to2} \frac{1}{x^2} = \frac{1}{2^2} = \frac{1}{4}
$$
\n
$$
\Rightarrow \boxed{\sqrt{6} \text{ at } x=2.}
$$

We see a VA at $x=0$ and a hole at $x = 2$.

Additional Exercises:

1. Evaluate
$$
\lim_{x \to -\infty} \frac{x^{2/3} + x^{3/3}}{x^{2/3} + 1}
$$

 λ . Evaluate $\lim_{x\to\infty} (\sqrt{x+2} - \sqrt{x})$

3. Does
$$
f(x) = \frac{\sin x}{\tan x}
$$
 have any VAs or HAs?

Solutions:
\n1.
$$
\lim_{x \to -\infty} \frac{x^{2/3} + x^{1/3}}{x^{2/3} + 1} = \lim_{x \to -\infty} \frac{x^{2/5} \left(1 + \frac{x^{1/3}}{x^{2/3}}\right)}{x^{2/5} \left(1 + \frac{1}{x^{2/3}}\right)}
$$

\n
$$
= \lim_{x \to -\infty} \frac{\left(1 + \frac{1}{x^{1/3}}\right)^{0}}{\left(1 + \frac{1}{x^{4/3}}\right)^{0}} = \frac{1 + 0}{1 + 0} = 1
$$

$$
2. \lim_{x \to \infty} \left(\sqrt{x + z} - \sqrt{x} \right) = \lim_{x \to \infty} \frac{\left(\sqrt{x + z} - \sqrt{x} \right)}{1} \cdot \frac{\left(\sqrt{x + z} + \sqrt{x} \right)}{\left(\sqrt{x + z} + \sqrt{x} \right)}
$$

$$
= \lim_{x \to \infty} \frac{\left(x + 2 \right) - x}{\sqrt{x + z} + \sqrt{x}}
$$

$$
= \lim_{x \to \infty} \frac{2}{\sqrt{x+a} + \sqrt{x}} = \boxed{0}
$$

3. Vertical asymptotes of $f(x) = \frac{\sin x}{\tan x}$ could occur

when tanx=0, or equivalently, when $x = K \cdot \pi$, $K \in \mathbb{Z}$.

However,
\n
$$
\lim_{x \to k\pi} \frac{\sin x}{\tan x} = \lim_{x \to k\pi} \frac{\sin x}{\left(\frac{\sin x}{\cos x}\right)} = \lim_{x \to k\pi} \cos x = \begin{cases} 1 & \text{if } k \text{ is even,} \\ -1 & \text{if } k \text{ is odd.} \end{cases}
$$

Since none of these limits are $\pm \infty$, there are no

vertical asymptotes

For horizontal asymptotes, we examine $lim_{x\to\infty} f(x)$ and

$$
\lim_{x \to -\infty} f(x).
$$
 We have

 $\lim_{x\to\pm\infty}\frac{\sin x}{\tan x}$ = $\lim_{x\to\pm\infty}\frac{\sin x}{\sin x}$ = $\lim_{x\to\pm\infty}\cos x$, which DNE.

Thus, no horizontal asymptotes either!