

Let's think of the tangent line as a function, $La(x)$. $L_{a}(x) = f(a) + f'(a)(x-a)$

If we zoom in closely around the point of tangency... $L_{\alpha}(x)$ $f(x)$

... we see that $f(x)$ and $L_{\alpha}(x)$ are nearly

 α x

indistinguishable! For this reason, $La(x)$ is

called the <u>linear approximation</u> or the <u>linearization</u> to $f(x)$ at $x = a$. $f(x) \approx L_a(x) = f(a) + f'(a)(x-a)$ for X near a. Ex: Find the linear approximation to $f(x) = \sqrt{x}$ at $x=4$. Use this to approximate $\sqrt{4.04}$ and $\sqrt{3.92}$. <u>Solution:</u> $L_y(x) = f(4) + f(4)(x-4)$ where $f(4) = 14 = 2$ and $f'(x) = \frac{1}{2\sqrt{x}} \implies f'(4) = \frac{1}{2\sqrt{4}} = \frac{1}{4}$. Hence $L_{4}(x) = 2 + \frac{1}{4}(x-4)$ $\sqrt{4.04}$ = $\int (4.04) \approx L_4(4.04)$ = $2 + \frac{1}{4}(4.04 - 4)$ $= 2 + \frac{1}{4}(0.04)$ $= 2 + 0.01 = 2.01$ Actual value: $\sqrt{4.04}$ = 2.009975...

$$
\sqrt{3.92} = f(3.92) \approx L_{q}(3.92) = 2 + \frac{1}{4}(3.92 - 4)
$$

\n
$$
= 2 + \frac{1}{4}(-0.08)
$$

\n
$$
= 2 - 0.02 = 1.98
$$

\n
$$
\frac{\text{Actual Value: } \sqrt{3.92} = 1.979898... \text{ closed!}}
$$

\n
$$
\frac{\text{Note: } \text{ If } \times \text{ is far from a, the approximation}}{\text{Label: } \text{ If } \times \text{ is after from a, the approximation}}
$$

\n
$$
L_{a}(x) \approx f(x) \text{ is often much less accurate.}
$$

\nFrom our last example at $x = 100$:
\n
$$
L_{q}(100) = 2 + \frac{1}{4}(100 - 4) = 26
$$
 while $f(100) = \sqrt{100} = 10$.

 $Ex:$ What is the Linearization of $f(x) = S \cap x$ at $x = 0$?

Solution: $f(o) = sin(o) = o$ and $f'(o) = cos(o) = 1$, so

$$
L_o(x) = f(o) + f'(o)(x-o) = x
$$

Thus, $sin(x) \approx x$ when x is close to O. This small angle approximation is used heavily in Physics & Engineering!

Differentials

The tangent line approximation can also be viewed as an estimate of the change in $y = f(x)$ resulting from ^a small change in ^x

We can calculate the change in the tangent line as

 $dy = La(a+\Delta x) - f(a)$ = $[f(x) + f'(x) ((x+x)-x) - f(x) = f'(x) dx$

Thus, if
$$
\Delta x = dx
$$
 is a small change in x from x=a
to $x = a + \Delta x$, the change we would expect to see in

 $y = f(x)$ (ay) can be approximated as

$$
\Delta y \approx dy = f'(a) dx
$$

We call dx and dy the differentials of x and y , respectively

 $Ex: If f'(1) = 3$, approximate the change in $f(x)$ as we move from $x=1$ to $x=1.02$.

 $Solution:$ We have $dx = \Delta x = 1.02 - 1 = 0.02$, hence

$$
\Delta y \approx dy = \int'(1) \Delta x = 3.0.02 = 0.06.
$$

The y value should increase by \approx 0.06 when we change the input from $X = 1$ to $X = 1.02$

Additional Exercises

1. Use a linear approximation to estimate $3/1003$ 2 Estimate the change in volume of ^a cube when its side length decreases from 10cm to 9.4 cm.

Solutions

1. Let's use a linear approximation to
$$
f(x) = \sqrt[3]{x}
$$

at the nearby point $\alpha = 1000$. We have
 $f(1000) = \sqrt[3]{1000} = 10$,
 $f'(x) = (x^{\frac{1}{3}})^{1} = \frac{1}{3}x^{-\frac{2}{3}} \implies f'(1000) = \frac{1}{3}(1000)^{-\frac{2}{3}} = \frac{1}{300}$
hence, the linear approximation is
 $L_{1000}(x) = f(1000) + f'(1000)(x-1000)$
 $= 10 + \frac{1}{300}(x-1000)$.

 $\ddot{}$

Consequently, $\sqrt[3]{1003}$ = $f(1003) \approx L_{1000}(1003)$ = $|0 + \frac{1}{300} (1003 - 1000)$ $= 10 + \frac{3}{300}$ $= 10.01$

 $2.$ The volume of the cube is $V = S^3$, where

 $s = s$ ide length. We have $V' = 3s^2$, so $V'(10) = 3(10)^2 = 300$.

When s decreases from 10cm to 9.4cm, we have

$$
ds = \Delta s = 10 - 9.4 = -0.6
$$

and therefore the resulting change in volume is

$$
\Delta V \approx dV = V'(10) ds = 300 (-0.6) = -180 cm^3
$$