Integrals don't just tell us about areas, we can also use them for calculating volumes of 3D Solids! The Solids we'll consider in MATH [[6 are called <u>solids of revolution</u>, and are obtained by revolving a 2D region about an axis:

a solid.

Start by slicing the solid into thin disks.

Each disk has width Δx . If A(x) denotes the area of the disk at each point X, then the volume of a typical disk is $A(x)\Delta x$. Adding these volumes:

Volume of the Solid =
$$\int_{a}^{b} A(x) dx$$

<u>Ex</u>: Consider the region between the x-axis and $y = \frac{x}{2}$ from x=0 to x=3. Find the volume of the solid obtained by rotating this region about the x-axis. <u>Solution</u>: Start with a sketch showing the region and

nence

$$Volume = \int_{0}^{3} A(x) dx = \int_{0}^{3} \pi \left(\frac{x}{2}\right)^{2} dx$$
$$= \frac{\pi}{4} \int_{0}^{3} \chi^{2} dx$$
$$= \frac{\pi}{4} \left[\frac{\chi^{3}}{3}\right]_{0}^{3} = \frac{9\pi}{4}$$

Ex: Find the volume of a sphere of radius r.

Solution: A sphere can be obtained by rotating the

$$y = \sqrt{r^2 - x^2}$$
 top half of the circle $x^2 + y^2 = r^2$
 $-r \le x \le r$ about the x-axis!

Volume =
$$\int_{-r}^{r} A(x) dx$$

=
$$\int_{-r}^{r} \pi \cdot rad; us^{2} dx$$

=
$$\int_{-r}^{r} \pi \left(\sqrt{r^{2} - x^{2}} \right)^{2} dx$$

=
$$\int_{-r}^{r} \pi \left(r^{2} - x^{2} \right) dx$$

=
$$\left[\pi r^{2} x - \frac{\pi x^{3}}{3} \right]_{-r}^{r}$$

=
$$\left(\pi r^{3} - \frac{\pi r^{3}}{3} \right) - \left(-\pi r^{3} + \frac{\pi r^{3}}{3} \right)$$

=
$$\frac{\sqrt{4}\pi r^{3}}{3}$$

<u>Ex</u>: Set up the integral that gives the volume of the solid obtained by rotating the region bounded between $y = x^2$ and y = Jx about the x-axis. Solution: Start with a sketch!

This time our cross-section isn't a disk... it's a washer!

Area =
$$A(x) = \pi \cdot (outer radius)^2 - \pi (inner radius)^2$$

Outer radius =
$$\sqrt{x}$$

Inner radius = x^2

$$\forall \text{olume} = \int_{0}^{1} A(x) \, dx = \int_{0}^{1} \left[\pi (r_{\text{out}})^{2} - \pi (r_{\text{in}})^{2} \right] dx$$
$$= \int_{0}^{1} \left[\pi (\sqrt{x})^{2} - \pi (x^{2})^{2} \right] dx$$

(a) the x-axis
Solution: Sketch!
Outer radius :
$$2x$$

Inner radius : $\frac{x^2}{2}$
 \therefore Volume = $\int_{0}^{4} \frac{A(x)}{10} dx = \int_{0}^{4} \left[\pi(2x)^2 - \pi(\frac{x^2}{2})^2 \right] dx$

(c) the line
$$y=9$$

$$\therefore \text{ Volume } = \int_{0}^{4} A(x) dx = \int_{0}^{4} \left[\pi \left(9 - \frac{x^{2}}{2} \right)^{2} - \pi \left(9 - 2x \right)^{2} \right] dx$$

 $y = \frac{x^2}{2}$

y= 2x

× >

$$\therefore \text{ Volume } = \int_{0}^{8} A(y) \, dy = \int_{0}^{8} \left[\pi \left(\sqrt{2y} \right)^{2} - \pi \left(\frac{y}{2} \right)^{2} \right] \, dy$$

Summary for disks/Washers		
Revolving	around	horizontal axis? Use functions of <u>X.</u>
Revolving	around	vertical axis? Use functions of y.