Suppose we wish to compute the volume of the solid of revolution below.

This time, we'll split up the solid into very thin cylindrical shells.

We again have

$$Volume = \int_{a}^{b} A(x) dx$$

Ex: Let R denote the region between y=0 and $y=\frac{1}{x}$ from x=1 to x=2. Find the volume of the solid obtained by rotating R about the y-axis. <u>Solution:</u> $y=\frac{1}{x}$ height = $\frac{1}{x}$

radius = X

Volume =
$$\int_{1}^{2} A(x) dx = \int_{1}^{2} 2\pi rh dx$$

= $\int_{1}^{2} 2\pi \cdot x \cdot \frac{1}{x} dx = \int_{1}^{2} 2\pi dx = 2\pi$

Ex: Consider the region between $y = \sin x$ and the x-axis for $x \in [0, \pi]$. Set up the integral for the volume of the solid obtained by revolving this region about the y-axis.

Solution :

<u>Ex</u>: Consider the region between $y = \sqrt{x}$ and $y = \frac{x}{3}$. Set up the integral for the volume of the solid obtained by revolving the region about the given axis.

(a) y-axis

(b) x = -2

$$V = \int_{0}^{9} A(x) dx = \int_{0}^{9} 2\pi c h dx = \int_{0}^{9} 2\pi (2 + x) \left(\sqrt{x} - \frac{x}{3} \right) dx$$

(d) <u>X-axis</u>

<u>Solution</u>: We get a cylindrical shell for each $y \in [0,3]$, so we'll be integrating with respect to y.

An easier approach here would be to use washers!

$$V = \int_{0}^{9} A(x) dx = \int_{0}^{9} \left(\pi (\sqrt{x})^{2} - \pi (\frac{x}{3})^{2} \right) dx$$

Summary for cylindrical shells
Revolving around vertical axis? Use functions of <u>X.</u>
Revolving around horizontal axis? Use functions of y.