Interactions of charged particles with graphene

Zoran Miskovic

Department of Applied Mathematics University of Waterloo, Ontario, Canada

Collaborators:

University of Waterloo:

Vinca Institute,

Belgrade, Serbia:

Dalian University of Technology, China:

Centro Atomico
Bariloche, Argentina:

F. Goodman

D. Mowbray

J. Zuloaga

M. Ghaznavi

K. Allison

Lj. Hadzievski

N. Bibic

I. Radovic

D. Borka

V. Borka Jovanovic

Y.-N. Wang

Y.-H. Song

D.-P. Zhou

N. Arista

J. Gervasoni

S. Segui

Support:

Outline

- Introduction
- Ion interactions with graphene
 - Nonlinear screening
 - Image potential
 - Stopping force
 - Wake effect
- Plasmon excitations by electron beams
 - HREELS, energy E~20 eV, substrate phonons
 - EELS, energy E~100 keV, layered electron gas
- Outlook

Graphene as building block of carbon nanostructures

graphene

Fullerene, C₆₀

nanotube, CNT

Why study carbon nanostructures?

Physical properties:

- Electrical, mechanical, thermal
- Dependent on: molecular structure,
 dielectric environment, local modification

Applications:

- Nanoelectronic devices
- Biochemical sensors
- New composite materials
- Ion storage (H, Li)
- Nanoelectromechanical systems (NEMS)

Electronic response to external charged particles (regime of electronic stopping for moving charges)

Electrons

- EELS in STEM: plasmon excitations of σ and π electrons in CNTs & graphene
- HREELS: plasmon excitations of π electrons in graphene
- image potential states: CNTs & graphene

□ lons

- ion channeling in CNTs
- grazing scattering of ions on graphene
- friction forces on slowly moving ions
- static screening of charged impurities

Electronic structure of graphene

Ambipolar electric field effect in single-layer graphene on top of an oxidized Si wafer

Applying gate potential V_g shifts Fermi energy E_F above/below Dirac point (electron or hole doping)

Equilibrium charge carrier density vs chemical potential μ may be >0 and <0

$$n(\mu) = \int_{0}^{\infty} d\varepsilon \, \rho(\varepsilon) \left[\frac{1}{1 + e^{\beta(\varepsilon - \mu)}} - \frac{1}{1 + e^{\beta(\varepsilon + \mu)}} \right]$$

Linear DOS: $\rho(\varepsilon) \approx \frac{g_s g_v}{2\pi} \frac{|\varepsilon|}{(\hbar v_F)^2}$, Fermi speed: $v_F \approx \frac{c}{300}$

Ion bombardment vs ion adsorption on graphene

J.H. Chen et al., Phys. Rev. Lett. (2009), Nature Phys. (2008)

Nonlinear screening of external charge by graphene

M. Ghaznavi et al. Phys. Rev. B 81 (2010) 085416

Study several effects:

- doping via gate potential
- finite temperature
- exchange interaction effects
- distance z_0 from graphene
- size of gap *h* to the substrate

Thomas-Fermi model at finite T

$$U(\mathbf{r}) = U_{\text{ext}}(\mathbf{r}) - e^2 \int d^2 \mathbf{r}' \left[n \left(\mu + U(\mathbf{r}') \right) - n \left(\mu \right) \right] \left[\frac{1}{\|\mathbf{r} - \mathbf{r}'\|} - \frac{\epsilon_{\text{s}} - 1}{\epsilon_{\text{s}} + 1} \frac{1}{\sqrt{(\mathbf{r} - \mathbf{r}')^2 + 4h^2}} \right]$$

Self-consistent solution for screened potential $U_{\pm}(r)$ in graphene when $\mu \geq 0$

Screened potential in graphene due to external charge

M. Ghaznavi et al. Phys. Rev. B 81 (2010) 085416

Ratio $U_{-}(r)/U_{+}(r)$ of screened potentials for $n \leq 0$

Nonlinear image interaction for external charge

M. Ghaznavi et al. Phys. Rev. B 81 (2010) 085416

Interaction of moving external charge with graphene

K.F. Allison et al., Phys. Rev. 80 (2009), Nanotechnology 21 (2010) 134017

Study several effects:

- doping via gate potential
- damping via Mermin approach
- local field effects
- phonons in polar substrate
- size of gap to the substrate

Dielectric function of graphene + substrate: Random Phase Approximation

$$\epsilon(q,\omega) = \left[1 - \frac{\epsilon_{\text{sub}}(\omega) - 1}{\epsilon_{\text{sub}}(\omega) + 1} e^{-2qh}\right]^{-1} + \frac{2\pi e^2}{q} \Pi_{\text{gra}}(q,\omega;\gamma)$$

Stopping force

$$F_s = \frac{2}{\pi} \frac{Z^2 e^2}{v} \int_0^\infty dq e^{-2qz_0} \int_0^{qv} d\omega \frac{\omega}{\sqrt{q^2 v^2 - \omega^2}} \Im\left[\frac{1}{\epsilon(q, \omega)}\right]$$

Image force

$$F_{s} = \frac{2}{\pi} \frac{Z^{2} e^{2}}{v} \int_{0}^{\infty} dq e^{-2qz_{0}} \int_{0}^{qv} d\omega \frac{\omega}{\sqrt{q^{2}v^{2} - \omega^{2}}} \Im\left[\frac{1}{\epsilon(q,\omega)}\right] \qquad F_{i} = \frac{2}{\pi} Z^{2} e^{2} \int_{0}^{\infty} dq q e^{-2qz_{0}} \int_{0}^{qv} \frac{d\omega}{\sqrt{q^{2}v^{2} - \omega^{2}}} \Re\left[\frac{1}{\epsilon(q,\omega)} - 1\right]$$

Loss Function $-\Im\{1/\epsilon(q,\omega)\}$ for graphene and 2DEG

Stopping and image forces on a point charge moving over epitaxial graphene on SiC and 2DEG (Ag on Si)

Wake effect due to charge moving at speed $v = 4v_F$ and distance $z_0 = 20$ Å from free graphene & 2DEG with doping equilibrium density $n = 10^{13}$ cm⁻²

Fermi wavenumber in graphene: $k_F = \sqrt{\pi n}$

HREEL spectra for graphene on a substrate

K.F. Allison et al., Nanotechnology 21 (2010) 134017

Total energy loss:
$$E_{\text{loss}} = -\int_{-\infty}^{\infty} dt \int d^2\mathbf{r} \int_{-\infty}^{\infty} dz \, \rho_{\text{ext}}(\mathbf{r}, z, t) \, \frac{\partial}{\partial t} \Phi_{\text{ind}}(\mathbf{r}, z, t)$$

$$= \int_{0}^{\infty} d\omega \, \omega \int \frac{d^2\mathbf{q}}{2\pi^2} |S(\mathbf{q}, \omega)|^2 \Im\left[\frac{-1}{\epsilon(q, \omega)}\right] \longrightarrow \text{Loss function}$$

Projectile structure factor:

$$S(\mathbf{q},\omega) = \int_{-\infty}^{\infty} dt \, e^{i\omega t} \int d^2 \mathbf{r} \, e^{-i\mathbf{q}\cdot\mathbf{r}} \int_{-\infty}^{\infty} dz \, e^{-q|z|} \, \rho_{\text{ext}}(\mathbf{r},z,t)$$

$$\epsilon(q,\omega) = \left[1 - \frac{\epsilon_{\text{surf}}(q,\omega) - 1}{\epsilon_{\text{surf}}(q,\omega) + 1} e^{-2qh}\right]^{-1} + \frac{2\pi e^2}{q} \chi_{\text{gr}}(q,\omega)$$

Surface dielectric function:

$$\epsilon_{\text{surf}}(q,\omega) = \left[\frac{q}{\pi} \int_{-\infty}^{\infty} \frac{dq_z}{(q^2 + q_z^2) \epsilon_{\text{sub}}(\sqrt{q^2 + q_z^2}, \omega)}\right]^{-1}$$

HREELS spectra for graphene on SiC, exper. by Liu et al. PRB 78 (2008) 201403

Stopping and image forces on projectile moving over graphene on SiC: effects of substrate phonons CEPAS proceedings

EEL spectra for free-standing N-layer graphene

experiment by: T. Eberlein et al., Phys. Rev. B 77 (2008) 233406

$$P(\omega) = \frac{4e^2}{\pi v^2} \int_0^{q_{\text{max}}} \frac{dq \, q^2}{\left[q^2 + \left(\frac{\omega}{v}\right)^2\right]^2} \Im \left\{ V(q) \chi(q, \omega) \sum_{n=1}^N \sum_{n'=1}^N e^{-i(n-1)d\omega/v} \left(\mathcal{M}^{-1}\right)_{nn'} e^{i(n'-1)d\omega/v} \right\}$$

$$\mathcal{M}_{nn'}(q,\omega) = \delta_{nn'} + (1 - \delta_{nn'}) V(q) \chi(q,\omega) e^{-qd|n'-n|}$$

$$\chi(q,\omega) = \chi_0(q,\omega)/[1 + V(q)\chi_0(q,\omega)], \quad V(q) = 2\pi e^2/q$$

Two-fluid, 2D hydrodynamic model for σ and π electrons: used in single-wall carbon nanotube

experiment: Kramberger et al., Phys. Rev. Lett. 100 (2008) 196803 theory: Mowbray et al., Phys. Rev. B 82 (2010) 035405

$$\chi_0(q,\omega) = \frac{n_{\pi}^0 q^2 / m_{\pi}^*}{s_{\pi}^2 q^2 + \omega_{\pi r}^2 - \omega \left(\omega + i\gamma_{\pi}\right)} + \frac{n_{\sigma}^0 q^2 / m_{\sigma}^*}{s_{\sigma}^2 q^2 + \omega_{\sigma r}^2 - \omega \left(\omega + i\gamma_{\sigma}\right)}$$

EELS for free-standing **graphite** (*N* >> 1)

F. Carbone et al., Chem. Phys. Lett. 468 (2009) 107

$$P(\omega) \approx N \frac{4e^2}{\pi v^2} \int_0^{q_{\text{max}}} \frac{dq \, q^2}{\left[q^2 + \left(\frac{\omega}{v}\right)^2\right]^2} \Im \left[\frac{V(q)\chi_0(q,\omega)}{1 + \frac{\sinh(qd)}{\cosh(qd) - \cos(\omega d/v)} V(q)\chi_0(q,\omega)} \right]$$

Outlook

- Electronic energy loss and image interaction important for charged particle interactions with C-nanostructures: energy deposition & transport
- Plasmon excitations in HREELS and EELS: full theory needed for dielectric response of both σ and π electrons
- Ion charge states during scattering need to be considered
- Effects of dielectric environment, particularly substrate phonons
- Concept of friction and screening or mobile ions in aqueous solution

Thank you for your attention