.... Solving TSPs
....


TSPLIB

World TSP

National TSPs

Bonn Institute

Bonn Institute

VLSI Data

Home

Page 2

Page 3

Page 4

Page 5

Page 6

Page 7

Page 8

Page 9

Page 10

Page 11

Summary


VLSI Data

We present below a summary of the solution status of the 102 VLSI TSP instances. In the table, we list the length of the best reported solution for each of the instances, and also the best reported lower bounds, that is, values for which it has been verified that there is no tour for the instance of length less than the specified number. The "Gap" column gives the % difference between the best tour and the best bound.

Name Gap Bound Tour Source of Tour
xqf131 Optimal 564 564 Concorde
xqg237 Optimal 1,019 1,019 Concorde
pma343 Optimal 1,368 1,368 Concorde
pka379 Optimal 1,332 1,332 Concorde
bcl380 Optimal 1,621 1,621 Concorde
pbl395 Optimal 1,281 1,281 Concorde
pbk411 Optimal 1,343 1,343 Concorde
pbn423 Optimal 1,365 1,365 Concorde
pbm436 Optimal 1,443 1,443 Concorde
xql662 Optimal 2,513 2,513 Concorde
rbx711 Optimal 3,115 3,115 Concorde
rbu737 Optimal 3,314 3,314 Concorde
dkg813 Optimal 3,199 3,199 Concorde
lim963 Optimal 2,789 2,789 Concorde
pbd984 Optimal 2,797 2,797 Concorde
xit1083 Optimal 3,558 3,558 Concorde
dka1376 Optimal 4,666 4,666 Concorde
dca1389 Optimal 5,085 5,085 Concorde
dja1436 Optimal 5,257 5,257 Concorde
icw1483 Optimal 4,416 4,416 Concorde
fra1488 Optimal 4,264 4,264 Concorde
rbv1583 Optimal 5,387 5,387 Concorde
rby1599 Optimal 5,533 5,533 Concorde
fnb1615 Optimal 4,956 4,956 Concorde
djc1785 Optimal 6,115 6,115 Concorde
dcc1911 Optimal 6,396 6,396 Concorde
dkd1973 Optimal 6,421 6,421 Concorde
djb2036 Optimal 6,197 6,197 Concorde
dcb2086 Optimal 6,600 6,600 Concorde
bva2144 Optimal 6,304 6,304 Concorde
xqc2175 Optimal 6,830 6,830 Keld Helsgaun
bck2217 Optimal 6,764 6,764 Concorde
xpr2308 Optimal 7,219 7,219 LKH
ley2323 Optimal 8,352 8,352 LKH
dea2382 Optimal 8,017 8,017 LKH
rbw2481 Optimal 7,724 7,724 LKH
pds2566 Optimal 7,643 7,643 LKH
mlt2597 Optimal 8,071 8,071 LKH
bch2762 Optimal 8,234 8,234 LKH
irw2802 Optimal 8,423 8,423 Keld Helsgaun
lsm2854 Optimal 8,014 8,014 LKH
dbj2924 Optimal 10,128 10,128 LKH
xva2993 Optimal 8,492 8,492 LKH
pia3056 Optimal 8,258 8,258 Hung Dinh Nguyen
dke3097 Optimal 10,539 10,539 LKH
lsn3119 Optimal 9,114 9,114 LKH
lta3140 Optimal 9,517 9,517 LKH
fdp3256 Optimal 10,008 10,008 LKH
beg3293 Optimal 9,772 9,772 LKH
dhb3386 Optimal 11,137 11,137 LKH
fjs3649 Optimal 9,272 9,272 LKH
fjr3672 Optimal 9,601 9,601 LKH
dlb3694 Optimal 10,959 10,959 LKH
ltb3729 Optimal 11,821 11,821 LKH
xqe3891 Optimal 11,995 11,995 Hung Dinh Nguyen
xua3937 Optimal 11,239 11,239 LKH
dkc3938 Optimal 12,503 12,503 LKH
dkf3954 Optimal 12,538 12,538 LKH
bgb4355 Optimal 12,723 12,723 Hung Dinh Nguyen
bgd4396 Optimal 13,009 13,009 LKH
frv4410 Optimal 10,711 10,711 LKH
bgf4475 Optimal 13,221 13,221 LKH
xqd4966 Optimal 15,316 15,316 LKH
fqm5087 Optimal 13,029 13,029 LKH
fea5557 Optimal 15,445 15,445 LKH
xsc6880 Optimal 21,535 21,535 Goldengorin, Jaeger, Molitor, Richter
bnd7168 Optimal 21,834 21,834 LKH
lap7454 Optimal 19,535 19,535 Keld Helsgaun
ida8197 Optimal 22,338 22,338 Hung Dinh Nguyen
dga9698 Optimal 27,724 27,724 LKH
xmc10150 Optimal 28,387 28,387 Hung Dinh Nguyen
xvb13584 Optimal 37,083 37,083 C. Dong, G. Jaeger, P. Molitor, D. Richter
xrb14233 0.026% 45,450 45,462 Keld Helsgaun
xia16928 0.023% 52,838 52,850 Hung Dinh Nguyen
pjh17845 0.019% 48,083 48,092 Keld Helsgaun
frh19289 0.013% 55,791 55,798 Keld Helsgaun
fnc19402 0.020% 59,275 59,287 C. Dong, G. Jaeger, P. Molitor, D. Richter
ido21215 0.028% 63,501 63,517 C. Dong, G. Jaeger, P. Molitor, D. Richter
fma21553 x.x% xxx 66,527 Keld Helsgaun
lsb22777 x.x% xxx 60,977 Keld Helsgaun
xrh24104 x.x% xxx 69,294 Keld Helsgaun
bbz25234 x.x% xxx 69,335 Keld Helsgaun
irx28268 x.x% xxx 72,607 Keld Helsgaun
fyg28534 x.x% xxx 78,562 C. Dong, G. Jaeger, P. Molitor, D. Richter
icx28698 x.x% xxx 78,087 Kazuma Honda, Yuichi Nagata, Isao Ono
boa28924 x.x% xxx 79,622 C. Dong, G. Jaeger, P. Molitor, D. Richter
ird29514 x.x% xxx 80,353 Keld Helsgaun
pbh30440 x.x% xxx 88,313 Keld Helsgaun
xib32892 x.x% xxx 96,757 C. Dong, G. Jaeger, P. Molitor, D. Richter
fry33203 x.x% xxx 97,240 Keld Helsgaun
bby34656 x.x% xxx 99,159 C. Dong, G. Jaeger, P. Molitor, D. Richter
pba38478 x.x% xxx 108,318 C. Dong, G. Jaeger, P. Molitor, D. Richter
ics39603 x.x% xxx 106,819 Keld Helsgaun
rbz43748 x.x% xxx 125,183 Keld Helsgaun
fht47608 x.x% xxx 125,104 Yuichi Nagata
fna52057 x.x% xxx 147,789 C. Dong, G. Jaeger, P. Molitor, D. Richter
bna56769 x.x% xxx 158,078 Yuichi Nagata
dan59296 x.x% xxx 165,371 Xavier Clarist
sra104815 x.x% xxx 251,342 Xavier Clarist
ara238025 x.x% xxx 578,761 Xavier Clarist
lra498378 x.x% xxx 2,168,039 Xavier Clarist
lrb744710 x.x% xxx 1,611,232 Xavier Clarist


Notes

1. All lower bounds were found by Concorde, our linear-programming based TSP solver.

2. LKH is Keld Helsgaun's powerful implementation of the Lin-Kernighan heuristic.
3. To keep the challenge list up to date, on April 4, 2017, I posted optimal results for all instances under 6,000 points. Each of the 24 newly posted results was solved with Concorde (including the option to use domino-parity constraints). The total running time was under 24 hours in each instance, with the time for the branch-and-cut search ranging from a low of 133 seconds for fjs3649 to a high of 51530 seconds for fea5557. Each run was made on a single core of an Intel Xeon E5-2697 @ 2.70 GHz.


Back to TSP home.

Last Updated:  May 3, 2017
Contact:  bico@uwaterloo.ca