|
TSPLIB
World TSP
National TSPs
Bonn Institute
VLSI Data
|
|
We present below a summary of the solution status of the 102 VLSI TSP
instances.
In the table, we list the length of the best reported solution for each
of the instances, and also the best reported lower bounds, that is,
values for which it has been verified that there is no tour for the
instance of length less than the specified number.
The "Gap" column gives the % difference between the best tour and the
best bound.
Name |
Gap |
Bound |
Tour |
Source of Tour |
xqf131 |
Optimal |
564 |
564 |
Concorde |
xqg237 |
Optimal |
1,019 |
1,019 |
Concorde |
pma343 |
Optimal |
1,368 |
1,368 |
Concorde |
pka379 |
Optimal |
1,332 |
1,332 |
Concorde |
bcl380 |
Optimal |
1,621 |
1,621 |
Concorde |
pbl395 |
Optimal |
1,281 |
1,281 |
Concorde |
pbk411 |
Optimal |
1,343 |
1,343 |
Concorde |
pbn423 |
Optimal |
1,365 |
1,365 |
Concorde |
pbm436 |
Optimal |
1,443 |
1,443 |
Concorde |
xql662 |
Optimal |
2,513 |
2,513 |
Concorde |
rbx711 |
Optimal |
3,115 |
3,115 |
Concorde |
rbu737 |
Optimal |
3,314 |
3,314 |
Concorde |
dkg813 |
Optimal |
3,199 |
3,199 |
Concorde |
lim963 |
Optimal |
2,789 |
2,789 |
Concorde |
pbd984 |
Optimal |
2,797 |
2,797 |
Concorde |
xit1083 |
Optimal |
3,558 |
3,558 |
Concorde |
dka1376 |
Optimal |
4,666 |
4,666 |
Concorde |
dca1389 |
Optimal |
5,085 |
5,085 |
Concorde |
dja1436 |
Optimal |
5,257 |
5,257 |
Concorde |
icw1483 |
Optimal |
4,416 |
4,416 |
Concorde |
fra1488 |
Optimal |
4,264 |
4,264 |
Concorde |
rbv1583 |
Optimal |
5,387 |
5,387 |
Concorde |
rby1599 |
Optimal |
5,533 |
5,533 |
Concorde |
fnb1615 |
Optimal |
4,956 |
4,956 |
Concorde |
djc1785 |
Optimal |
6,115 |
6,115 |
Concorde |
dcc1911 |
Optimal |
6,396 |
6,396 |
Concorde |
dkd1973 |
Optimal |
6,421 |
6,421 |
Concorde |
djb2036 |
Optimal |
6,197 |
6,197 |
Concorde |
dcb2086 |
Optimal |
6,600 |
6,600 |
Concorde |
bva2144 |
Optimal |
6,304 |
6,304 |
Concorde |
xqc2175 |
Optimal |
6,830 |
6,830 |
Keld Helsgaun |
bck2217 |
Optimal |
6,764 |
6,764 |
Concorde |
xpr2308 |
Optimal |
7,219 |
7,219 |
LKH |
ley2323 |
Optimal |
8,352 |
8,352 |
LKH |
dea2382 |
Optimal |
8,017 |
8,017 |
LKH |
rbw2481 |
Optimal |
7,724 |
7,724 |
LKH |
pds2566 |
Optimal |
7,643 |
7,643 |
LKH |
mlt2597 |
Optimal |
8,071 |
8,071 |
LKH |
bch2762 |
Optimal |
8,234 |
8,234 |
LKH |
irw2802 |
Optimal |
8,423 |
8,423 |
Keld Helsgaun |
lsm2854 |
Optimal |
8,014 |
8,014 |
LKH |
dbj2924 |
Optimal |
10,128 |
10,128 |
LKH |
xva2993 |
Optimal |
8,492 |
8,492 |
LKH |
pia3056 |
Optimal |
8,258 |
8,258 |
Hung Dinh Nguyen |
dke3097 |
Optimal |
10,539 |
10,539 |
LKH |
lsn3119 |
Optimal |
9,114 |
9,114 |
LKH |
lta3140 |
Optimal |
9,517 |
9,517 |
LKH |
fdp3256 |
Optimal |
10,008 |
10,008 |
LKH |
beg3293 |
Optimal |
9,772 |
9,772 |
LKH |
dhb3386 |
Optimal |
11,137 |
11,137 |
LKH |
fjs3649 |
Optimal |
9,272 |
9,272 |
LKH |
fjr3672 |
Optimal |
9,601 |
9,601 |
LKH |
dlb3694 |
Optimal |
10,959 |
10,959 |
LKH |
ltb3729 |
Optimal |
11,821 |
11,821 |
LKH |
xqe3891 |
Optimal |
11,995 |
11,995 |
Hung Dinh Nguyen |
xua3937 |
Optimal |
11,239 |
11,239 |
LKH |
dkc3938 |
Optimal |
12,503 |
12,503 |
LKH |
dkf3954 |
Optimal |
12,538 |
12,538 |
LKH |
bgb4355 |
Optimal |
12,723 |
12,723 |
Hung Dinh Nguyen |
bgd4396 |
Optimal |
13,009 |
13,009 |
LKH |
frv4410 |
Optimal |
10,711 |
10,711 |
LKH |
bgf4475 |
Optimal |
13,221 |
13,221 |
LKH |
xqd4966 |
Optimal |
15,316 |
15,316 |
LKH |
fqm5087 |
Optimal |
13,029 |
13,029 |
LKH |
fea5557 |
Optimal |
15,445 |
15,445 |
LKH |
xsc6880 |
Optimal |
21,535 |
21,535 |
Goldengorin, Jaeger, Molitor, Richter |
bnd7168 |
Optimal |
21,834 |
21,834 |
LKH |
lap7454 |
Optimal |
19,535 |
19,535 |
Keld Helsgaun |
ida8197 |
Optimal |
22,338 |
22,338 |
Hung Dinh Nguyen |
dga9698 |
Optimal |
27,724 |
27,724 |
LKH |
xmc10150 |
Optimal |
28,387 |
28,387 |
Hung Dinh Nguyen |
xvb13584 |
Optimal |
37,083 |
37,083 |
C. Dong, G. Jaeger, P. Molitor, D. Richter |
xrb14233 |
0.026% |
45,450 |
45,462 |
Keld Helsgaun |
xia16928 |
0.023% |
52,838 |
52,850 |
Hung Dinh Nguyen |
pjh17845 |
0.019% |
48,083 |
48,092 |
Keld Helsgaun |
frh19289 |
0.013% |
55,791 |
55,798 |
Keld Helsgaun |
fnc19402 |
0.020% |
59,275 |
59,287 |
C. Dong, G. Jaeger, P. Molitor, D. Richter |
ido21215 |
0.028% |
63,501 |
63,517 |
C. Dong, G. Jaeger, P. Molitor, D. Richter |
fma21553 |
x.x% |
xxx |
66,527 |
Keld Helsgaun |
lsb22777 |
x.x% |
xxx |
60,977 |
Keld Helsgaun |
xrh24104 |
x.x% |
xxx |
69,294 |
Keld Helsgaun |
bbz25234 |
x.x% |
xxx |
69,335 |
Keld Helsgaun |
irx28268 |
x.x% |
xxx |
72,607 |
Keld Helsgaun |
fyg28534 |
x.x% |
xxx |
78,562 |
C. Dong, G. Jaeger, P. Molitor, D. Richter |
icx28698 |
x.x% |
xxx |
78,087 |
Kazuma Honda, Yuichi Nagata, Isao Ono |
boa28924 |
x.x% |
xxx |
79,622 |
C. Dong, G. Jaeger, P. Molitor, D. Richter |
ird29514 |
x.x% |
xxx |
80,353 |
Keld Helsgaun |
pbh30440 |
x.x% |
xxx |
88,313 |
Keld Helsgaun |
xib32892 |
x.x% |
xxx |
96,757 |
C. Dong, G. Jaeger, P. Molitor, D. Richter |
fry33203 |
x.x% |
xxx |
97,240 |
Keld Helsgaun |
bby34656 |
x.x% |
xxx |
99,159 |
C. Dong, G. Jaeger, P. Molitor, D. Richter |
pba38478 |
x.x% |
xxx |
108,318 |
C. Dong, G. Jaeger, P. Molitor, D. Richter |
ics39603 |
x.x% |
xxx |
106,819 |
Keld Helsgaun |
rbz43748 |
x.x% |
xxx |
125,183 |
Keld Helsgaun |
fht47608 |
x.x% |
xxx |
125,104 |
Yuichi Nagata |
fna52057 |
x.x% |
xxx |
147,789 |
C. Dong, G. Jaeger, P. Molitor, D. Richter |
bna56769 |
x.x% |
xxx |
158,078 |
Yuichi Nagata |
dan59296 |
x.x% |
xxx |
165,371 |
Xavier Clarist |
sra104815 |
x.x% |
xxx |
251,342 |
Xavier Clarist |
ara238025 |
x.x% |
xxx |
578,761 |
Xavier Clarist |
lra498378 |
x.x% |
xxx |
2,168,039 |
Xavier Clarist |
lrb744710 |
x.x% |
xxx |
1,611,232 |
Xavier Clarist |
Notes
1. All lower bounds were found by Concorde, our linear-programming based
TSP solver.
2. LKH is Keld
Helsgaun's powerful implementation of the Lin-Kernighan heuristic.
3. To keep the challenge list up to date, on April 4, 2017, I posted optimal results for all instances under 6,000 points.
Each of the 24 newly posted results was solved with Concorde (including the option to use domino-parity constraints).
The total running time was under 24 hours in each instance, with the time for the branch-and-cut search ranging from a low of 133 seconds for fjs3649 to a high of 51530 seconds for fea5557.
Each run was made on a single core of an Intel Xeon E5-2697 @ 2.70 GHz.
Back to TSP home.
Last Updated: May 3, 2017
Contact: bico@uwaterloo.ca
|