next up previous
Next: (10 points) Up: mid01 Previous: mid01

(20 points)

  1. Define the following:
    1. convex set in $\Re^n$
    2. convex function defined on $\Re^n$
    3. closed convex cone in $\Re^n$
    4. dual (nonnegative polar) cone of a set $C$ in $\Re^n$
  2. Show that the following two sets are convex cones. Then derive an explicit form for the dual (polar) cone $C^+=C^*$.
    1. $C_1 = \left\{ (x,y) \mid 0 \le y\le x \right\}$.
    2. $C_2 = \left\{ (x,y) \mid y \ge \vert x\vert \right\}$.
  3. Show that each of the above cones does not contain the point $(\bar{x},\bar{y})=(0,-1)$. For each of the above cones find a separating hyperplane with the point $(\bar{x},\bar{y})=(0,-1)$.
  4. Consider the quadratic objective function

    \begin{displaymath}
f(x)=3x_1^2-4x_1x_2+2x_2^2+7x_1-x_2.
\end{displaymath}

    1. Find appropriate $A,b$ and write $f(x)=x^T A x + b^T x$.
    2. Show that $f$ is a strictly convex function.
    3. Use the geometric characterization of optimality (Pshenichnyi condition). Show that the origin in $\Re^2$ minimizes $f$ (defined above) subject to $x \in C_1$ (defined in (2a) above).



Henry Wolkowicz
2001-02-28