|
TeachingI have taught the following course at the University of Waterloo :- Fall 2019 MATH 124 - Calculus and Vector Algebra for Kinesiology. The course website is here.
Fall 2018 PMATH 336 - Introduction to Group Theory and its Applications. The course website is here.
Student advising Anton Iliashenko (NSERC-Undergraduate Student Research Assistant) Spring 2019. (co-supervised with Spiro Karigiannis) Project title: "Flows of metrics induced from mean curvature flow"Project abstract: The mean curvature flow is a flow of an isometrically immersed submanifold M inside an ambient Riemannian manifold X in the direction of the mean curvature vector field. The Ricci flow is an i ntrinsic flow of a metric on a Riemannian manifold M in the direction of (minus) the Ricci tensor. Let M be a Riemannian manifold and consider it as the zero section inside one of its tensor bundles X, such as the cotangent bundle X = T* M or the real canonical bundle X = Λn (T* M) where n = dim(M). Using the Levi-Civita connection of M, there is a canonical Riemannian metric induced on X, which makes the zero section isometrically immersed. Therefore one can evolve M inside X by the mean curvature flow. For small time, this evolution Mt will be canonically diffeomorphic to M using the exponential map on the mean curvature vector field. Pulling back via this diffeomorphism, the mean curvature flow of M in X thus induces an intrinsic flow of metrics on M. The natural question is: what is this induced flow of metrics? If it is the Ricci flow, this gives a new interesting characterization of Ricci flow. If it is not the Ricci flow, this could be a new interesting canonical flow of metrics. Moreover, in the case when X = T* M, the zero section is Lagrangian, and mean curvature flow preserves the Lagrangian condition. The Lagrangian mean curvature flow is well-behaved. Similarly, when X = Λn (T* M), then M is a hypersurface in X. The hypersurface mean curvature flow is also well-behaved. I have been a TA (duties include : taking tutorial sessions, marking assignments and exam papers, holding office hours and occasionally teaching a class) for the following courses at the University of Waterloo :- Spring 2019 PMATH 321 - Non-Euclidean geometry Winter 2019 PMATH 467/667 - Algebraic Topology MATH 135 - Algebra for Honours Spring 2018 PMATH 347 - Groups and Rings Winter 2018 PMATH 365 - Elementary Differential Geometry MATH 148 - Advanced Calculus Fall 2017 MMT 640 - An Introduction to Algebraic Number Theory (online) Spring 2017 MMT 648 - Calculus for Teachers (online) Winter 2017 PMATH 467/667 - Algebraic Topology Fall 2016 MATH 135 - Algebra for Honours MATH 115 - Linear Algebra for Beginners Winter 2016 PMATH 365- Elementary Differential Geometry Spring 2016 MMT 636 - Linear Algebra for Teachers (online) Fall 2015 PMATH 465/665 - Geometry of Manifolds MATH 127 - Calculus for Sciences |