Chapter 3: Induction and the Binomial Theorem |
---|
78 - 82. Find the value of each recursive mystery function on any n-tuple ( x1, x2, ..., xn ) and prove that your value is correct.
78. | ||||
myst ( x1, x2, ..., xn ) | = | x1 | if n = 1 | |
xn - myst ( x1, ..., xn-1 ) | if n > 1 | |||
79. | ||||
myst ( x1, x2, ..., xn ) | = | x1 | if n = 1 | |
xn myst ( x1, ..., xn-1 ) | if n > 1 | |||
80. | ||||
myst ( x1, x2, ..., xn ) | = | x1 | if n = 1 | |
xn | if xn > myst ( x1, x2, ..., xn-1 ) | |||
myst ( x1, x2, ..., xn-1 ) | otherwise | |||
81. | ||||
myst ( x1, x2, ..., xn ) | = | x1 | if n = 1 | |
x1 - 2 myst ( x2, ..., xn ) | if n > 1 | |||
82. | ||||
myst ( x1, x2, ..., xn ) | = | x1 | if n = 1 | |
myst ( x1, ..., xn-1 ) + myst ( x2, ..., xn ) | if n > 1 |
83. Find a recursive definition for the function
1 | 1 | 1 | ||||||
e ( n ) | = | 1 | + | - | + | - | + ... + | - |
1! | 2! | n! |
84. Discuss the following recursive definition of the GCD for a >= 0 and b >=0. Is it correct? Is it efficient?
GCD ( a, b ) | = | b | if a = 0 | |
GCD ( b, a ) | if b < a | |||
GCD ( b - a, a ) | if b >= a > 0 |