next up previous contents
Next: Exponential of matrices Up: Linear Systems Previous: Linear Systems

2.1 Linear systems in R2

Consider the linear system

 
x' = Ax, (2.1)

where

\begin{displaymath}x = \left( \begin{array}{l}
x_{1} \\
x_{2} \end{array} \righ...
...}
a_{11} & a_{12} \\
a_{21} & a_{22} \end{array} \right) \, .
\end{displaymath}

By a linear transformation

x = Py

system (2.1) can be reduced to

 
y' = By , (2.2)

where B has one of the following three forms:

\begin{displaymath}\left[ \begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2} ...
...\
- \beta & \alpha \end{array} \right] \, , \, \beta > 0 \, ,
\end{displaymath}

which are called Jordan canonical forms of A.

Let's begin by describing the phase portraits of system (2.2).


Case I:      $B = \left[ \begin{array}{cc}
\lambda_{1} & 0 \\ 0 & \lambda_{2} \end{array} \right]$

          


All solutions are half lines which approach (leave) (0,0).

          


$\left( \frac{y_{1}}{k_{1}}
\right)^{\frac{1}{\lambda_{1}}} = \left(
\frac{y_{2}}{k_{2}} \right)^{\frac{1}{\lambda_{2}}}$
All solutions starting from $(k_{1}, k_{2}) \neq (0,0)$ are tangent to the y2-axis as they approach (leave) (0,0).


                     


Case II:      $B = \left[ \begin{array}{cc}
\lambda & 1 \\ 0 & \lambda \end{array} \right]$      $\left\{ \begin{array}{l}
y_{1} (t) = (k_{1} + tk_{2}) e^{\lambda t} \, , \\
y_{2} (t) = k_{2} e^{\lambda t} \, , \end{array} \right.$     $\left( \begin{array}{l}
y_{1} (0) \\ y_{2} (0) \end{array} \right) \, = \, \left(
\begin{array}{l}
k_{1} \\ k_{2} \end{array} \right)$.
If $\lambda \neq 0$ and $k_{2} \neq 0$, then $y_{1} = y_{2} \left[ \frac{k_{1}}{k_{2}} +
\frac{1}{\lambda} \ln \left( \frac{y_{2}}{k_{2}} \right)
\right]$.

                     


\begin{displaymath}\frac{dy_{2}}{dy_{1}} = \pm \infty \quad \mbox{at} \quad
y_{...
...\quad \lim_{t \raro \pm
\infty} \frac{dy_{2}}{dy_{1}} = 0 \, .
\end{displaymath}

All solutions have vertical tangent lines when they cut the line $y_{2} = - \lambda y_{1}$. All solutions are tangent to the y1-axis as they approach (leave) (0,0).


Case III:      $B = \left[ \begin{array}{rc}
\alpha & \beta \\ - \beta & \alpha \end{array} \right] \,
, \quad \beta > 0$.

\begin{displaymath}\left\{ \begin{array}{l}
y_{1}' = \alpha y_{1} + \beta y_{2} ...
...
y_{2}' = - \beta y_{1} + \alpha y_{2} \, . \end{array}\right.
\end{displaymath}

Let z = y1 + i y2. Then $z' = \ol{\lambda}
z$, where $\ol{\lambda} = \alpha - i \beta$.

Thus the solution is

\begin{displaymath}z (t) = k e^{\ol{\lambda}t} \, ,\quad k = k_{1} + i k_{2}
\, ,
\end{displaymath}

i.e. $y_{1} (t) + iy_{2} (t) = (k_{1} + ik_{2})
e^{(\alpha - i \beta)t} = e^{\alpha t} (k_{1} + ik_{2})
(\cos \beta t - i \sin \beta t)$ which yields

\begin{displaymath}\left\{ \begin{array}{l}
y_{1} (t) = e^{\alpha t} (k_{1} \cos...
...-k_{1} \sin \beta t + k_{2} \cos
\beta t) \end{array} \right.
\end{displaymath}


         


Remark:     All the phase portraits we have made so far are in terms of the canonical coordinates y. You may wonder what the portraits look like in terms of the original coordinates x. Here are some examples


Example 2.1.1:     Consider the system x' = Ax, where $A = \left( \begin{array}{rl}
-4 & 3 \\ -2 & 1 \end{array} \right)$.

\begin{displaymath}\mbox{Let} \quad x = Py , \quad \mbox{where} \quad P =
\left(
\begin{array}{cc} 3 & 1 \\ 2 & 1 \end{array} \right),
\end{displaymath}

$P^{-1} = \left( \begin{array}{rr}
1 & -1 \\ -2 & 3 \end{array} \right)$. Then y' = By, where $B= \left( \begin{array}{rr}
-2 & 0 \\ 0 & -1 \end{array} \right) = P^{-1} AP$.


       

Example 2.1.1 Simulation


Example 2.1.2:     Consider the system x' = Ax, where $A = \left( \begin{array}{rl}
-2 & 2 \\ -1 & 0 \end{array} \right)$. Let

\begin{displaymath}x = Py, \quad P = \left( \begin{array}{lr}
1 & -1 \\ 1 & 0 \e...
... \left(
\begin{array}{rl}
0 & 1 \\ -1 & 1 \end{array} \right).
\end{displaymath}

Then y' = By, $B = \left( \begin{array}{rr}
-1 & 1 \\ -1 & -1 \end{array} \right) = P^{-1} AP$.

        

Example 2.1.2 Simulation


Remark:     It should be noted that systems x' = Ax and x' = kAx, k > 0, have identical phase portraits.


next up previous contents
Next: Exponential of matrices Up: Linear Systems Previous: Linear Systems